Abstract

Macroporous hydroxyapatite have been used in biomedical application especially for bone graft. The objective of this research was to study the effect of yolk addition, rate of sintering temperature rise, and rate of stirring on the physical, chemical and mechanical properties of porous hydroxyapatite prepared using protein foaming-starch consolidation method. The slurry was made by mixing the hydroxyapatite and starch powder with Darvan 821A and yolk in a beaker glass. The slurry was stirred mechanically at rate of 150 rpm for 3 hours and it poured in cylindrical mold. Subsequently the slurry was heated in air oven at 180°C for 1 hour. The dried green bodies were burn out at 600°C ended by sintering at 1250°C. The porous hydroxyapatite with average pore size in the range of 13.7-17.9 μm, porosity of 59.3-63.6 % and compressive strength of 5.17-8.2 MPa was obtained. The calculation result of response surface methodology shows that p-value < 0.05 and lack of fit > 0.05. The most effecting factor significantly was hydroxyapatite addition that followed by mixing rate and temperature rising rate of sintering. Optimum condition hydroxyapatite addition of 22 gr, mixing rate of 150 rpm and temperature rising rate of sintering of 2.8°C/minutes with the optimum value of response for pore size by 17.665 μm, porosity by 63.475% and compressive strength 5.17 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call