Abstract

Pulsation of current in tungsten inert gas (TIG) welding is employed to obtain good quality weldments. Peak current, background current, and welding speed in TIG welding are important parameters and their effects on the induced residual stresses are studied using Box–Behnken design methodology. The location of maximum residual stress was found to be close to the weld centerline. Longitudinal and transverse residual stresses at this location were found to be dependent on the pulsed TIG welding input parameters. However, using design of experiment approach, welding speed was found to have the most dominant influence on the stress values. In order to minimize the residual stresses, a reduction in heat input also led to reduction of weld pool penetration. The results of multiresponse optimization showed that in order to achieve a full penetration weldment, a minimum value of 235 MPa for longitudinal and 84 MPa for transverse residual stress will be attained. A weldment with these features can be obtained by using a high value of peak current and a high value of welding speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call