Abstract

1. Inferior temporal cortex (IT) is a "high-order" region of primate temporal visual cortex implicated in visual pattern perception and recognition. To gain some insight into the development of this area, we compared the properties of single neurons in IT in infant monkeys ranging from 5 wk to 7 mo of age with those of neurons in IT in adult animals. Both anesthetized and awake behaving paradigms were used. 2. In immobilized infant monkeys under nitrous oxide anesthesia, the incidence of visually responsive cells was markedly less than in adult monkeys studied under similar conditions. In infants 4-7 mo of age, only half of IT neurons studied were visually responsive, compared with > 80% in adult monkeys. In monkeys < 4 mo old, even fewer (< 10%) could be visually driven. "Habituation" of IT cells to repeated stimulus presentation appeared more pronounced in infant monkeys under nitrous oxide anesthesia than in adult animals. 3. IT cells in the anesthetized infant monkeys that did respond showed receptive field properties similar to those of responsive adult IT neurons studied under similar conditions. Two thirds of the receptive fields plotted in the anesthetized 4 to 7-mo-old group were bilateral, and median field size did not differ between the infants and comparable adult groups, being approximately 20 degrees on a side in each case. 4. In contrast to the results obtained under anesthesia, most IT cells in alert infant monkeys 5 wk-7 mo of age (80%) were responsive to visual stimuli, and this incidence of visually responsive IT neurons did not differ from that obtained in awake adult macaques. However, response magnitude, measured as spikes per second above baseline rate, was significantly lower in the infant alert sample than in the adult control (5.2 vs. 12.6 spikes/s, mean +/- SE, deviation from spontaneous rate, respectively). 5. In addition to having lower magnitudes of visual response, IT cells in the awake infants also tended to have longer and more variable latencies. The overall mean for the infant cells was 196 ms, compared with an overall mean of 140 ms for IT neurons in the alert control adult. 6. Although the magnitude of response of neurons in alert infant IT cortex was lower overall, the incidence and features of stimulus selectivity shown by alert infant IT neurons were strikingly similar to those of IT cells of both anesthetized and unanesthetized adult monkeys.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call