Abstract

Understanding the neural mechanisms of object and face recognition is one of the fundamental challenges of visual neuroscience. The neurons in inferior temporal (IT) cortex have been reported to exhibit dynamic responses to face stimuli. However, little is known about how the dynamic properties of IT neurons emerge in the face information processing. To address this issue, we made a model of IT cortex, which performs face perception via an interaction between different IT networks. The model was based on the face information processed by three resolution maps in early visual areas. The network model of IT cortex consists of four kinds of networks, in which the information about a whole face is combined with the information about its face parts and their arrangements. We show here that the learning of face stimuli makes the functional connections between these IT networks, causing a high spike correlation of IT neuron pairs. A dynamic property of subthreshold membrane potential of IT neuron, produced by Hodgkin-Huxley model, enables the coordination of temporal information without changing the firing rate, providing the basis of the mechanism underlying face perception. We show also that the hierarchical processing of face information allows IT cortex to perform a "coarse-to-fine" processing of face information. The results presented here seem to be compatible with experimental data about dynamic properties of IT neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.