Abstract
BackgroundPrecipitation plays an important role in crop production and soil greenhouse gas emissions. However, how crop yield and soil nitrous oxide (N2O) emission respond to precipitation change, particularly with different background precipitations (dry, normal, and wet years), has not been well investigated. In this study, we examined the impacts of precipitation changes on corn yield and soil N2O emission using a long-term (1981–2020, 40 years) climate dataset as well as seven manipulated precipitation treatments with different background precipitations using the DeNitrification-DeComposition (DNDC) model.ResultsResults showed large variations of corn yield and precipitation but small variation of soil N2O emission among 40 years. Both corn yield and soil N2O emission showed near linear relationships with precipitation based on the long-term precipitation data, but with different response patters of corn yield and soil N2O emission to precipitation manipulations. Corn yield showed a positive linear response to precipitation manipulations in the dry year, but no response to increases in precipitation in the normal year, and a trend of decrease in the wet year. The extreme drought treatments reduced corn yield sharply in both normal and wet years. In contrast, soil N2O emission mostly responded linearly to precipitation manipulations. Decreases in precipitation in the dry year reduced more soil N2O emission than those in the normal and wet years, while increases in precipitation increased more soil N2O emission in the normal and wet years than in the dry year.ConclusionsThis study revealed different response patterns of corn yield and soil N2O emission to precipitation and highlights that mitigation strategy for soil N2O emission reduction should consider different background climate conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.