Abstract

Seagrass-herbivore interactions play a principal role in regulating the structure and function of coastal food webs, which were affected by nutrient enrichment. Seawater nutrient enrichment might change seagrass palatability by altering seagrass physical and chemical traits, consequently modulating herbivory patterns, but this remains elusive. In this study, the dominant tropical seagrass Thalassia hemprichii was cultured in different ammonium concentrations to examine the response of seagrass nutritional quality, deterrent secondary metabolites, and leaf toughness, as well as the subsequent effect of the changed physical (e.g., leaf toughness) and chemical traits (e.g., nitrogen content; total phenol) on the grazing activity of the herbivorous snail Cerithidea rhizophorarum. Ammonium enrichment enhanced seagrass nutritional quality and decreased physical defence. Low ammonium enrichment increased total phenol content, while high ammonium enrichment reduced it. Both low and high ammonium enrichment enhanced the grazing intensity of C. rhizophorarum on seagrass. Interestingly, nutritional quality mostly determined the herbivory preference of C. rhizophorarum on the intact seagrass having physical structure, with a chemical deterrent (total phenol) playing a secondary role. In contrast, chemical deterrent mainly determined the grazing intensity on agar seagrass food which was made artificially to exclude physical structure. This indicated that seagrass leaf physical structure might hinder phenol compounds from deterring herbivores. Overall, the results presented here demonstrate that ammonium enrichment remarkably increased seagrass palatability and subsequently induced higher susceptibility to herbivory, which might induce seagrass loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call