Abstract

Deuterium nuclear magnetic resonance (2H NMR) spectroscopy was used to investigate the response of the phosphatidylcholine headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) to changes in surface electrostatic charge in membranes consisting of ternary mixtures of lipids. DMPC was deuterated at the choline alpha- and beta-methylene segments. The membrane surface charge was manipulated by the simultaneous addition of cationic didodecyldimethylammonium bromide (DDAB) and anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) to neutral DMPC. Addition of increasing amounts of DDAB caused a progressive decrease (increase) in the 2H NMR quadrupole splitting from DMPC-alpha-d2 (DMPC-beta-d2). Addition of increasing amounts of DMPG caused a progressive increase (decrease) in the quadrupole splitting from DMPC-alpha-d2 (DMPC-beta-d2). Qualitatively, the 2H NMR quadrupole splitting charge response exhibited the same main features for ternary mixtures of DDAB/DMPG/DMPC and binary mixtures of DDAB/DMPC or DMPG/DMPC. Quantitatively, however, the 2H NMR quadrupole splittings obtained from ternary mixtures did not coincide with those obtained from binary mixtures of nominally identical surface charge densities. Hence, the quadrupole splitting did not respond directly to the net membrane surface charge. Instead, the quadrupole splitting measured for a given ternary lipid composition could be reproduced by summing the individual effects of the charged lipids in binary mixtures, weighted according to their appropriate mole fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call