Abstract

The response to membrane surface charge of the glycerol headgroup of dimyristoyl-phosphatidylglycerol (DMPG) was investigated via deuterium and phosphorus-31 nuclear magnetic resonance spectroscopy. The membrane surface charge was manipulated by adding various amounts of neutral dimyristoylphosphatidylcholine (DMPC) and/or positively charged didodecyldimethylammonium bromide (DDAB) to the negatively charged DMPG, selectively deuterated at the alpha and beta segments of its glycerol headgroup. The deuterium and phosphorus-31 nuclear magnetic resonance spectra were all characteristic of random dispersions of liquid-crystalline lipids in a bilayer configuration. Differential scanning calorimetry showed that all mixtures investigated exhibited gel to liquid-crystalline phase transitions below 35 degrees C. Measurements of the deuterium quadrupole splitting and of the phosphorus-31 chemical shift anisotropy lead to the following observations. (1) Dilution of the negative surface charge density by the addition of DMPC had little effect on the quadrupole splitting from either alpha- or beta-deuterated DMPG. (2) Direct cancellation of the negative surface charge density by addition of DDAB led to a progressive decrease in the quadrupole splitting measured from alpha-deuterated DMPG, while the quadrupole splitting measured from beta-deuterated DMPG increased. For alpha-deuterated DMPG addition of 0.3 mole fraction of DDAB resulted in the appearance of two distinct quadrupole splittings. No such effect was observed for beta-deuterated DMPG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.