Abstract

The response of superoxide dismutase (SOD) activity in the marine dinoflagellate Gonyaulax polyedra to chronic (5.0 ppb Hg, 0.5 ppm Cd, 2.0 ppm Pb and 0.1 ppm Cu, during 30 days) and acute (10.0 ppb Hg, 1.0 ppm Cd, 5.0 ppm Pb and 0.25 ppm Cu, during 48 hours) exposure to metals was investigated. Under chronic exposure to Hg, Cd, Pb, and Cu, total SOD activity of metal-treated cells increased during the first day of exposure to plateau levels of 134, 148, 127, and 139% of control values respectively. Under acute metal exposure, SOD activity increases were of similar magnitude but much more rapid (within several hours) and of shorter duration. In addition, assays for oxidative damage to lipids revealed high levels of lipid peroxidation in cells kept in either chronic or acute exposure to metals reaching values 2-fold greater than the control group. Changes in SOD activity were dependent on the metal, its concentration, and the time of exposure. Non-denaturing polyacrylamide gels revealed induction of Fe-SOD and Mn-SOD but not Cu-Zn-SOD isoforms in cells kept under acute exposure to metals. These results suggest that oxidative stress may be an important mediator of metal toxicity in algal systems, with SOD providing antioxidant protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call