Abstract

Background: The aim of this study was to investigate and compare the cytotoxicity and gene expression of Bio-C Repair, Mineral Trioxide Aggregate (MTA) HP Repair, and Biodentine on stem cells derived from exfoliated deciduous teeth.Materials and Methods: In this in vitro study MTT assay was used to assess the cellular viability at three different dilutions. The gene expression of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin [OCN], and dentin matrix protein-1 (DMP-1) was measured with real-time polymerase chain reaction after 7 days, 14 days, and 21 days of incubation. One-way analysis of variance and Bonferroni posttest were used for statistical analysis (p=o.o5).Results: After 72 h of incubation at dilution 1:4, stem cells derived from human exfoliated deciduous teeth (SHEDs) cultivated in Biodentine, followed by Bio-C Repair and MTA Repair HP reported with highest cellular viability. The highest mRNA expression of Runx2, ALP, OCN, and DMP-1 was reported in SHEDs cultured in Biodentine (after 21 days of incubation). Conclusion: Bio-C Repair and MTA HP Repair are biocompatible and capable of odontogenic differentiation similar to Biodentine when cultured in stem cells derived from exfoliated primary teeth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call