Abstract
Straw return is an effective measure to promote sustainable agriculture by significantly improving soil fertility. At present, few studies have been conducted on the most effective carbon enhancing management measures for various crops. Therefore, we conducted a meta-analysis using data collected from 184 literature sources, comprising 3297 data sets to analyze the carbon increase effects of straw returning in three main crops (rice, maize, and wheat) in China and to explore the influence mechanism of natural factors, soil properties, straw return measures, and cropping systems on the carbon enhancement effect. The study showed that straw return significantly increased soil organic carbon and the rate of increase was higher for wheat at 15.88% (14.74%–17.03%) than for rice at 12.7% (11.5%–13.91%) and maize at 12.42% (11.42%–13.42%), with varying degrees of improvement in other soil physicochemical properties. Natural factors have the greatest impact on the carbon increasing effect of rice fields, reaching 28.8%, especially at temperature between 10 °C and 15 °C, less than 800 mm precipitation, low latitude, and short frost-free period. Maize and wheat are most affected by soil properties, reaching 41% and 34.5% respectively. Furthermore, field management practices also play a pivotal role, organic carbon increasing obviously was observed when the C/N ratio of exogenous nutrients is bigger than 20 with the low initial organic matter. Shallow tillage and less than 7.5 t hm−2 straw returning with 3–10 years to the field are ideal for rice and maize. Crop rotation, especially in drylands, increased soil organic carbon more significantly than continuous. The results of our analysis can provide valuable insights into the effect of straw return on carbon increase. In the future, the soil carbon can be improved by adopting rational cropping patterns and straw return measures with taking into account climate and soil characteristics for different crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.