Abstract
Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and the microbial response may ultimately feed back on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil microbial biomass, composition and substrate utilization patterns in pine and hardwood forests at the Harvard Forest Chronic N Amendment Study. Functional and structural genes for important N cycling processes were studied using DNA community profiles. In the O horizon soil of both stands, N additions decreased microbial biomass C as determined by chloroform fumigation-extraction. Utilization of N-containing substrates was lower in N-treated pine soils than in the controls, suggesting that N additions reduced potential microbial activity in the pine stand. Counts of fungi and bacteria as determined by direct microscopy and culture techniques did not show a clear response to N additions. Nitrogen additions, however, strongly influenced microbial community DNA profiles. The ammonia monooxygenase gene (amoA) generally was found in high N-treated soils, but not in control soils. The nifH gene for N2-fixation was generally found in all soils, but was more difficult to amplify in the pine N-treated soil than the controls, suggesting that the population of N2-fixers was altered by N additions. The 16S rDNA gene for Nitrobacter was found in all samples, but distinct differences among DNA profiles were observed in the pine B horizon in the control, low N, and high N-treated plots. Our findings indicate that chronic N additions decreased chloroform microbial carbon and altered microbial community profiles. These changes in microbial community structure may be an important component of the response of terrestrial ecosystems to human-accelerated N supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.