Abstract

ABSTRACTTo infer future changes in the distribution of tree species in response to climatic variability, we need an understanding of the recruitment dynamics and their climatic controls at the species’ distribution limit. We studied the recruitment processes in an isolated population of Pinus uncinata Ram. located at the southwestern limit of the species’ distribution in Europe (Iberian System, NE Spain). We assessed (1) the temporal patterns of pine recruitment, and (2) how climate influenced recruitment. To reconstruct the recent recruitment episodes and to assess the climatic influence on recruitment and radial growth we employed dendrochronological methods. We mapped, measured the size, and estimated the age of all P. uncinata individuals located within a 50 m × 40 m plot. Additional age data were obtained from individuals located in four nearby 20 m × 20 m plots. The main episodes of tree establishment (early 1960s, late 1980s) coincided with low radial growth during a period with reduced grazing pressure. Grazing pressure and tree recruitment were not related at the spatiotemporal scale of this study. High May, August, and September minimum temperatures and high April precipitation were positively associated with recruitment, whereas high maximum April and June temperatures were negatively associated with recruitment. The studied population was in equilibrium with climate until the late 1990s, one of the warmest decades in the 20th century, when recruitment decreased despite the availability of suitable sites for establishment and the presence of reproductive individuals. We suggest that late-summer temperatures might have a non-linear negative threshold effect on recruitment rather than a linear effect. Despite increasing evidence of climate-induced recruitment episodes in isolated cold mountain forests, threshold effects of temperature on recruitment may imply limited range shifts of these populations in response to climate warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.