Abstract

Nitrite-dependent anaerobic methane oxidation (n-damo) catalyzed by Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria is a new pathway for the regulation of methane emissions from paddy fields. Elevated atmospheric CO2 concentrations (e[CO2]) can indirectly affect the structure and function of microbial communities. However, the response of M. oxyfera-like bacteria to e[CO2] is currently unknown. Here, we investigated the effect of e[CO2] (ambient CO2 + 200 ppm) on community composition, abundance, and activity of M. oxyfera-like bacteria at different depths (0–5, 5–10, and 10–20 cm) in paddy fields across multiple rice growth stages (tillering, jointing, and flowering). High-throughput sequencing showed that e[CO2] had no significant effect on the community composition of M. oxyfera-like bacteria. However, quantitative PCR suggested that the 16S rRNA gene abundance of M. oxyfera-like bacteria increased significantly in soil under e[CO2], particularly at the tillering stage. Furthermore, 13CH4 tracer experiments showed potential n-damo activity of 0.31–8.91 nmol CO2 g−1 (dry soil) d−1. E[CO2] significantly stimulated n-damo activity, especially at the jointing and flowering stages. The n-damo activity and abundance of M. oxyfera-like bacteria increased by an average of 90.9% and 50.0%, respectively, under e[CO2]. Correlation analysis showed that the increase in soil dissolved organic carbon content caused by e[CO2] had significant effects on the activity and abundance of M. oxyfera-like bacteria. Overall, this study provides the first evidence for a positive response of M. oxyfera-like bacteria to e[CO2], which may help reduce methane emissions from paddy fields under future climate change conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call