Abstract

This paper addresses the issue of the dynamic response of thin lithographic mask structures to thermally induced stress fields. In particular, the impact of repetitively pulsed x-ray sources are examined: the short duration (1–100 nsec) pulses induce large step changes in mask temperatures, which can, in turn, induce a dynamic response. The impact of conductive cooling of the mask is to reduce the repetitively pulsed problem to a series of isolated nearly identical thermal impulses of duration approximately equal to the cooling time. The importance of self-weight and prestress is examined, and an analysis of the nonlinear dynamic response to thermal impulses is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.