Abstract
The occurrence and development of rill erosion depends on the hydraulic characteristics of water flow and underlying soil surface features. Our experiments include one-rainfall-intensity treatments (2.0 mm min−1) and various microtopographic levels based on different tillage practices with smooth slope (CK), artificial digging (AD), and ridge tillage (RT) on a 15° slope. The results indicate the following: (1) The soil roughness index values were in the order of CK < AD < RT, and the spatial variability of different tillage practices had strong autocorrelations during different rill erosive stages. The codomain values decreased with the increase in microtopography. (2) The multifractal dimension values of tillage practices in various erosive stages were in the order of RT > AD > CT. The microtopography of different tilled slopes showed strong multifractal characteristics, and the multifractal characteristics were stronger as the microrelief heterogeneity increased. For the CK slope, the generalized fractal dimension span (ΔD) ranged between 0.0019 and 0.0058. For the AD slope, ΔD was between 0.2901 and 0.5112. And, for the RT slope, ΔD was between 0.4235 and 0.7626. (3) With the evolution of rill erosion, the flow pattern on different tilled slopes changed from subcritical transition flow to supercritical transition flow. (4) Soil roughness index and ΔD had good correlations with hydrodynamic parameters. The stronger the erosive energy of runoff was, the higher the spatial heterogeneity of microtopography was. This study is expected to provide a theoretical basis for revealing the hydrodynamic mechanism of rill erosion in slope farmland.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have