Abstract

This study focuses on the theoretical aspect of topographic scattering induced by a shallow asymmetric V-shaped canyon under plane shear horizontal-wave incidence. An analytical approach, based on the region-matching technique, is applied to derive a rigorous series solution, which is more general than that in a previous study. For the wave functions constrained in two angular directions, a novel form of Graf's addition formula is derived to arbitrarily shift the local coordinate system. Barrier geometry, angle of incidence and wave frequency are taken as the most significant parameters in exploring the topographic effects of localized concave free surfaces on ground motions. Both surface and subsurface motions are presented. Comparisons with previously published results and boundary-element solutions show good agreement. Frequency-domain results indicate that, for the high-frequency case at a low grazing angle (corresponding to the potential case in teleseismic propagation), the high levels of amplified motions occur mostly on the illuminated side of the canyon. When the windward slope is steeper, the peak amplitude values, at least 2.4 times larger than those of free-field responses, tend to increase. Time-domain simulations display how a sequence of scattered waves travel and attenuate at regional distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.