Abstract
We present the results of a study of the response of a delta-doped charge-coupled device (CCD) exposed to ions with energies less than 10keV. The study of ions in the solar wind, the majority having energies in the 1–5keV range, has proven to be vital in understanding the solar atmosphere and the near Earth space environment. Delta-doped CCD technology has essentially removed the dead layer of the silicon detector. Using the delta-doped detector, we are able to detect H+ and N+ ions with energies ranging from 1to10keV in the laboratory. This is a remarkable improvement in the low energy detection threshold over conventional solid-state detectors, such as those used in space sensors, one example being the solar wind ion composition spectrometer (SWICS) on the Advanced Composition Explorer spacecraft, which can only detect ions with energies greater than 30keV because of the solid-state detector’s minimum energy threshold. Because this threshold is much higher than the average energy of the solar wind ions, the SWICS instrument employs a bulky high voltage postacceleration stage that accelerates ions above the 30keV detection threshold. This stage is massive, exposes the instrument to hazardous high voltages, and is therefore problematic both in terms of price and its impact on spacecraft resources. Adaptation of delta-doping technology in future space missions may be successful in reducing the need for heavy postacceleration stages allowing for miniaturization of space-borne ion detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.