Abstract
Multiple types of artificial reefs have been widely deployed in the coast of northern Yellow Sea, which can enhance fishery resources, restore coastal habitats and improve the marine environment. Meiofauna plays important ecological roles in marine ecosystem, but the response mechanism of meiofaunal community to different types of artificial reef is still poorly understood. In this study, we characterized the meiofaunal communities of concrete artificial reef habitat (CAR), rocky artificial reef habitat (RAR), ship artificial reef habitat (SAR) and adjacent natural habitat (NH) using 18S rRNA gene high-throughput sequencing technology, and explored the relationship of community-environment. The results showed that the diversity and community structure of meiofauna differed significantly on both spatial and temporal scales. Spatial differences were mainly contributed to the flow field effects and biological effects generated by artificial habitats, while temporal differences were driven by temperature (T) and dissolved oxygen (DO). The dominant taxa of meiofauna included arthropods, annelids, platyhelminths and nematodes. Platyhelminths were mainly positively influenced by artificial habitats but annelids were the opposite. Co-occurrence network analysis revealed that NH was more sensitive to environmental change than artificial habitat, while the performance of CAR and SAR were more stable. These results indicated that meiofauna can respond accordingly to different types of artificial habitats, and could be superimposed over the normal seasonal effects. The current study could provide fundamental data for understanding the response mechanism of meiofaunal community to different types of artificial habitats and a reference for assessments of the impact of artificial reefs on the marine environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.