Abstract
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract infection in children worldwide. RSV infects airway epithelial cells, where it activates inflammatory genes via the NF-kappaB pathway. NF-kappaB is controlled by two pathways, a canonical pathway that releases sequestered RelA complexes from the IkappaBalpha inhibitor, and a second, the noncanonical pathway, that releases RelB from the 100-kDa NF-kappaB2 complex. Recently we found that the retinoic acid-inducible gene I (RIG-I) is a major intracellular RSV sensor upstream of the canonical pathway. In this study, we surprisingly found that RIG-I silencing also inhibited p100 processing to 52-kDa NF-kappaB2 ("p52"), suggesting that RIG-I was functionally upstream of the noncanonical regulatory kinase complex composed of NIK.IKKalpha subunits. Co-immunoprecipitation experiments not only demonstrated that NIK associated with RIG-I and its downstream adaptor, mitochondrial antiviral signaling (MAVS), but also showed the association between IKKalpha and MAVS. To further understand the role of the NIK.IKKalpha pathway, we compared RSV-induced NF-kappaB activation using wild type, Ikkgamma(-/-), Nik(-/-), and Ikkalpha(-/-)-deficient MEF cells. Interestingly, we found that in canonical pathway-defective Ikkgamma(-/-) cells, RSV induced RelA by liberation from p100 complexes. RSV was still able to activate IP10, Rantes, and Grobeta gene expression in Ikkgamma(-/-) cells, and this induction was inhibited by small interfering RNA-mediated RelA knockdown but not RelB silencing. These data suggest that part of the RelA activation in response to RSV infection was induced by a "cross-talk" pathway involving the noncanonical NIK.IKKalpha complex downstream of RIG-I.MAVS. This pathway may be a potential target for RSV treatment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have