Abstract

Recent studies revealed that the high production of reactive oxidative species due to exposure to fine or ultrafine particles are involved in many chronic respiratory disorders. However, the poor standard of clinical data in sub-Saharan countries makes the assessment of our knowledge on the health impacts of air pollution in urban cities very difficult. Objective: The aim of this study was to evaluate the distribution of respiratory disorders associated with exposure to fine and ultrafine air particles through the changes of some oxidative stress biomarkers among motorbike drivers from two cities of Cameroon. Methods: A cross-sectional survey using a standardized questionnaire was conducted in 2019 on 191 motorcycle drivers (MDs) working in Douala and Dschang. Then, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) were measured using colorimetric methods. The data of participants, after being clustered in Microsoft Excel, were analyzed and statistically compared using SPSS 20 software. Results: The motorbike drivers recruited from both cities were from 21 to 40 years old, with a mean age of 29.93 (±0.82). The distribution of respiratory disorders, such as a runny nose, cold, dry cough, chest discomfort, and breathlessness, was significantly increased among MDs in Douala. According to the results of biological assays, SOD and MDA were significantly greater among the MDs recruited in Douala compared to those of Dschang. The change in these oxidative stress markers was significantly positively correlated with the mobilization of monocytes and negatively correlated with neutrophils, showing the onset and progression of subjacent inflammatory reactions, and it seemed to be significantly influenced by the location MDs lived in. Conclusions: Through this study, we have confirmed the evidence supporting that the onset and progression of oxidative stress is caused by the long-term exposure to fine or ultrafine air particles among working people living in urban cities. Further studies should be conducted to provide evidence for the cellular damage and dysfunction related to the chronic exposure to fine particulate matter (PM) in the air among working people in the metropolitan sub-Saharan Africa context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call