Abstract

Refractory ceramic fibers (RCFs) are increasingly used as heating-insulated materials in various industries. However, toxicological and epidemiological studies focusing on the adverse effects of RCFs were still insufficient, particularly in China. We conducted a cross-sectional study to evaluate comprehensively the associations between occupational exposure to RCFs and respiratory health effects among Chinese workers. We measured and calculated cumulative RCFexposure levels of RCFs workers from the biggest RCFs factory in China. In total, 430 RCF-exposed workers and 121 controls were enrolled in this study. Physical examinations of the respiratory system were performed and serum levels of biomarkers including Clara cell protein 16 (CC16), surfactant protein D (SP-D), transforming growth factor β1 (TGF-β1), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined among all subjects. RCF exposure workers showed a higher prevalence rate of respiratory symptoms (cough: 11.9%) and lower levels of small airways function indices (V50 %: 82.71 ± 20.01, maximal mid expiratory flow (MMEF)%: 81.08 ± 19.56) compared with the control group (cough: 5.0%, V50 %: 90.64 ± 24.36, MMEF%: 88.83 ± 24.22). RCFs workers showed higher levels of TGF-β1 (31.04 ng/mL) and 8-OHdG (130.72 ng/mL) and lower levels of CC16 (3.68 ng/mL) compared with the controls (TGF-β1: 26.63 ng/mL, 8-OHdG: 106.86 ng/mL, CC16: 5.65 ng/mL). After adjusting for covariates, cumulative RCF exposure levels showed significant positive associations with the levels of TGF-β1 and 8-OHdG and negative association with the level of CC16. Occupational RCF exposure could induce adverse respiratory health effects, including cough and small airways damage, which may correlate to the altered levels of lung damage markers (CC16 and TGF-β1) and oxidative markers (8-OHdG).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.