Abstract
An experimental system combining an eddy covariance system, a micrometeorological station and soil chambers placed in planted areas and in root exclusion zones was installed during three successive years in a production crop managed in a traditional way at the Lonzée experimental site (Belgium). Measurements were made successively on seed potato, winter wheat and sugar beet. The general objectives of the study were, first to evaluate the relative contributions to total ecosystem respiration (TER) of heterotrophic, above ground autotrophic and below ground autotrophic respiration over a succession of three agricultural crops (seed potato, winter wheat and sugar beet) cultivated on successive years at the same location and, secondly, to identify the driving variables of these contributions. Results showed that, during the observation periods, TER was dominated by autotrophic respiration (AR) (60–90%) and that AR was dominated by its above ground component (60–80%). HR was found to increase with temperature and to be independent of Gross Primary Production (GPP), whereas AR was driven by GPP and was mostly independent of temperature. The AR response to GPP was specific to the crop: not only AR intensity but also AR distribution between its above- (ARa) and below- (ARb) ground components were found to differ from one crop to another and, in the winter wheat, from one development stage to another. Generally, ARb contribution to AR was found larger when carbon allocation towards roots was more important. An uncertainty analysis was made and showed that the main sources of uncertainties on the estimates were the spatial variability for soil chamber measurements and uncertainties linked to the data gap filling method for eddy covariance measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.