Abstract

Flash droughts and their ecological impacts on terrestrial ecosystems have recently garnered increased attention due to their rapid intensification. However, research on the response and recovery of ecosystems to flash droughts, particularly regarding different types of flash droughts and their determinants, remains relatively limited. Here we classified flash droughts into meteorological, evaporative, and soil types based on the differences in primary drivers, and identified them in the middle and lower reaches of Yangtze River Basin (MLRYRB) from 2000 to 2022. We assessed the response and recovery time of ecosystems to different flash droughts based on solar-induced chlorophyll fluorescence (SIF), analyzed the factors affecting response and recovery times using random forest models, and identified the spatial patterns of dominant factors through partial correlation analysis. Our results revealed distinct characteristics among different flash droughts, with soil flash droughts exhibiting the highest frequency and longest duration. The average response time and recovery times ranged from 15.7 to 19.2 days and from 59.6 to 69.2 days, respectively, for different flash droughts, with soil flash droughts presenting the longest response time and shortest recovery time. Among all vegetations, mixed forests exhibited the longest response time to meteorological and soil flash droughts, while woody savannas presented significantly longer recovery time from evaporative and soil flash droughts. Analysis of primary drivers indicated that precipitation predominantly determined the response time to meteorological and evaporative flash droughts, while surface soil moisture played a primary role in soil flash drought. Furthermore, surface soil moisture was found to determine the recovery time from all flash droughts in over 57 % of pixels. Our findings could offer valuable insights into quantifying the ecological impacts and drivers of different flash droughts on ecosystems, deepening our understanding of ecosystem responses to flash droughts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.