Abstract

AbstractIn this study, the interannual variations in the tropical cyclone (TC) over the western North Pacific (WNP) and the influences of regional sea surface temperature (SST) anomalies are documented by separating the WNP into four quadrants considering nonuniform SST‐induced environmental changes. Our analysis shows that the TC variations in the northwest and southeast quadrants are related to both equatorial central‐eastern Pacific Ocean (EPO) and tropical Indian Ocean (TIO) SST anomalies. The TC variation in the northeast quadrant is mainly related to tropical North Atlantic Ocean SST anomalies. The main environmental variables differ for the TC variations in the four quadrants. Lower‐level (850‐hPa) vorticity is important for the TC variations in the northwest, southwest, and southeast quadrants. Midlevel (700‐hPa) humidity contributes to the TC variations in the northwest, northeast, and southeast quadrants. The vertical shear has a supplementary contribution to the TC variation in the southeast quadrant. The potential intensity (PI) negatively affects the TC variations in the southwest and southeast quadrants. The remote SST anomalies modulate different environmental variables over the WNP. The TIO SST influence is manifested in the lower‐level vorticity and vertical motion. The tropical North Atlantic SST impact occurs through the lower‐level vorticity change. The EPO SST effect occurs via changing the lower‐level vorticity and vertical motion as well as the midlevel moisture and vertical shear. The environmental variables experience more prominent changes when SST anomalies coexist in two remote regions. Numerical experiments confirm the EPO and TIO SST anomaly impacts on the environmental conditions affecting the WNP TC variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call