Abstract

One of advantages of supercapacitors in comparison with batteries is their potentially high resource. Resource stability, as well as a supercapacitor self-discharge, depends on many factors. The most important of them are impurities in electrolyte, carbon materials and functional groups on their surface. Authors have offered perspective carbon material – the activated carbon from wood received by thermochemical synthesis. The electric capacity around 160 F/g is reached in supercapacitors with aprotic organic electrolyte (1M tetraethylammonium tetrafluoroborate). Authors have conducted the research of properties of the developed activated carbons from wood aiming to check resource opportunities supercapacitors with aprotic organic electrolyte. Resource tests lasted more than 6.5 months. Today more than one million cycles of a charge – discharge are reached at charge current of 100 mA/cm2. It is established that functional groups have a great influence on a resource of supercapacitors. To achieve high levels of stability in the resource activation technology developed carbon is provided to minimize the number of functional groups. Heat treatment of carbons after activation in the environment of argon at the increased temperatures was in addition carried out. It is shown that electrochemical characteristics of the supercapacitor throughout resource tests are at the stable level. Thus, there are bases to believe that devices on the basis of this carbon will be able to work continuously during the large period of time that is especially important, for example, for the autonomous systems located in hard-to-reach spots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call