Abstract

We consider two-player reachability games with additional resource counters on arenas that are induced by the configuration graphs of pushdown systems. For a play, we define the resource cost to be the highest occurring counter value. In this way, we quantify resources and memory that player 0 needs to win. We introduce the bounded winning problem: Is there a uniform bound k such that player 0 can win the game from a set of initial configurations with this bound k? We provide an effective, saturation-based method to solve this problem for regular sets of initial and goal configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.