Abstract

The author presents two algorithms that construct a set of initial configurations from which a given action will reliably accomplish a planar manipulation task. The first algorithm applies energy arguments to construct a conservative set of successful initial configurations, while the second algorithm performs numerical integration to construct a set that is much less conservative. The algorithms may be applied to a variety of tasks, including pushing, placing-by-dropping, and force-controlled assembly tasks. Both algorithms consider the task geometry and mechanics, and allow uncertainty in every task parameter except for the object shapes. Experimental results which demonstrate the validity of the algorithms output for two example manipulation tasks are presented. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.