Abstract
In this paper, the problem of resource management is studied for a network of wireless virtual reality (VR) users communicating over small cell networks (SCNs). In order to capture the VR users' quality-of-service (QoS), a novel VR model, based on multi-attribute utility theory, is proposed. This model jointly accounts for VR metrics such as tracking accuracy, processing delay, and transmission delay. In this model, the small base stations (SBSs) act as the VR control centers that collect the tracking information from VR users over the cellular uplink. Once this information is collected, the SBSs will then send the three dimensional images and accompanying surround stereo audio to the VR users over the downlink. Therefore, the resource allocation problem in VR wireless networks must jointly consider both the uplink and downlink. This problem is then formulated as a noncooperative game and a distributed algorithm based on the machine learning framework of echo state networks (ESNs) is proposed to find the solution of this game. The proposed ESN algorithm enables the SBSs to predict the VR QoS of each SBS and guarantees the convergence to a mixed-strategy Nash equilibrium. Simulation results show that the proposed algorithm yields significant gains, in terms of total utility value of VR QoS, that reach up to 22% compared to Q-learning. The results also show that the proposed algorithm has a faster convergence time than Q- learning and can guarantee low delays for VR services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.