Abstract
Renewable energies are promoted in order to reduce greenhouse gas emissions and the depletion of fossil fuels. However, plants for renewable electricity production incorporate specifically higher amounts of materials being rated as potentially scarce. Therefore, it is in question which (mineral) resources contribute to the overall resource consumption and which of the manifold impact assessment methods can be recommended to cover an accurate and complete investigation of resource use for renewable energy technologies. Life cycle assessment is conducted for different renewable electricity production technologies (wind, photovoltaics, and biomass) under German conditions and compared to fossil electricity generation from a coal-fired power plant. Focus is given on mineral resource depletion for these technologies. As no consensus has been reached so far as to which impact assessment method is recommended, different established as well as recently developed impact assessment methods (CML, ReCiPe, Swiss Ecoscarcity, and economic scarcity potential (ESP)) are compared. The contribution of mineral resources to the overall resource depletion as well as potential scarcity are identified. Overall resource depletion of electricity generation technologies tends to be dominated by fossil fuel depletion; therefore, most renewable technologies reduce the overall resource depletion compared to a coal-fired power plant. But, in comparison to fossil electricity generation from coal, mineral resource depletion is increased by wind and solar power. The investigated methods rate different materials as major contributors to mineral resource depletion, such as gallium used in photovoltaic plants (Swiss Ecoscarcity), gold and copper incorporated in electrical circuits and in cables (CML and ReCiPe), and nickel (Swiss Ecoscarcity and ReCiPe) and chromium (ESP) for stainless steel production. However, some methods lack characterization factors for potentially important materials. If mineral resource use is investigated for technologies using a wider spectrum of potentially scarce minerals, practitioners need to choose the impact assessment method carefully according to their scope and check if all important materials are covered. Further research is needed for an overall assessment of different resource compartments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have