Abstract

Lightweight design can contribute to savings of consumed material in products and enhancing their energy efficiency during the use phase but also to a higher resource consumption at the beginning- and the end-of-life, challenging the implementation of a circular economy. Hence, this publication methodologically addresses the synergies and conflicts of lightweight design and design for circularity. The concept of the ‘functional life cycle energy analysis’ is presented, which foresees the division of a product architecture into functions with allocated energy consumptions as cross-stage indicator for the expected resource consumption along the entire product life cycle. Holistic optimization potentials within three life cycle stages can thus be derived as recommendations for action for future product generations. This allows engineers to rethink functional principles and supports decision making in the early design phases of implementing lightweight design and design for circularity. The methodology is illustrated by means of a robotics use case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call