Abstract

The limited battery life of user equipment (UE) is always one of the key concerns of mobile users and a critical factor that could limit device-to-device (D2D) communications. In this letter, considering that UEs may have different residual battery energy levels, we define the overall system survival time as the minimal expected battery lifetime of all transmitting UEs in a cell. We then propose to maximize the overall system survival time by jointly optimizing the resource allocation and power control (RAPC) D2D links and conventional cellular links. Subject to the transmission rate requirement of each link, the joint optimization problem is formulated as a mixed integer non-linear programming problem, which is solved by a game theory-based distributed approach. Simulation results demonstrate that our game theory-based RAPC approach can enormously prolong the overall system survival time as compared with existing RAPC approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call