Abstract

The use of various synthetic calcium phosphate compositions for the promotion of bone in bone defects is of potential interest because such materials may be tailor made and may bond to bone. There is yet an inadequate knowledge of the role of calcium phosphate composition and resorbability for the bone response. The aim of the present study was to compare the ability of resorbable versus nonresorbable hydroxyapatite (HA) granules to promote new bone formation in cortical bone defects. Resorbable and nonresorbable HA granules, used as bone graft substitutes, were evaluated after 6 weeks and 3 months in the rabbit tibia. Circular defects (diameter 5.0 mm) were made in both tibias of 18 New Zealand white rabbits. The 36 defects were divided into three groups (six observations per group and time, respectively). The first group was augmented with resorbable HA granules, the second group was augmented with ceramic nonresorbable HA granules, and the third group was left without augmentation (control). The animals were killed after 6 weeks and 3 months, and the tissue was evaluated with light microscopic (LM) morphology and morphometry, scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX). After 3 months LM morphometry revealed significantly more newly formed bone in the two HA augmented groups compared with that in the control. A close contact was found between both kinds of HA granules and new bone as viewed with light microscopy and SEM. A relatively slow degradation process was indicated by the small reduction of the total granule area in the cortical defects. However, LM observations showed a change of granule form. Pilot experiments using SEM-EDX indicate that Ca and P contents had decreased in the resorbable HA granules between 6 weeks and 3 months. Further, a higher content of Ca and P was found in the newly formed bone close to granules, in comparison with more distant newly formed bone. Our results suggest that both resorbable and nonresorbable HA granules promote new bone formation in rabbit cortical defects, which does not occur in control defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call