Abstract

We investigate the possibility of inducing superconductivity in a graphite layer by electronic correlation effects. We use a phenomenological microscopic Hamiltonian which includes nearest neighbor hopping and an interaction term which explicitly favors nearest neighbor spin-singlets through the well-known resonance valence bond (RVB) character of planar organic molecules. Treating this Hamiltonian in mean-field theory, allowing for bond-dependent variation of the RVB order parameter, we show that both s- and d-wave superconducting states are possible. The d-wave solution belongs to a two-dimensional representation and breaks time reversal symmetry. At zero doping there exists a quantum critical point at the dimensionless coupling J/t = 1.91 and the s- and d-wave solutions are degenerate for low temperatures. At finite doping the d-wave solution has a significantly higher Tc than the s-wave solution. By using density functional theory we show that the doping induced from sulfur absorption on a graphite layer is enough to cause an electronically driven d-wave superconductivity at graphite-sulfur interfaces. We also discuss applying our results to the case of the intercalated graphites as well as the validity of a mean-field approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.