Abstract

We present a resonant-cavity approach for noninvasive, pulse-to-pulse, beam emittance measurements of noncircular multibunch beams. In a resonant cavity, desired field components can be enhanced up to QLλ∕π, where QLλ is the loaded quality factor of the resonant mode λ, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad cavity, with its quadrupole mode (TM220 for rectangular cavities) at beam operating frequency, rotated 45° with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole-moment measurements, performed at different betatron phases in a linear transport system, determine the beam emittance, i.e., the beam size and shape in the beam’s phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms beam size of a large aspect ratio beam. The resolution for such a measurement of rms beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of 10μm. A prototype quad cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator at the Stanford Linear Accelerator Center. The results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor [J. S. Kim et al., Rev. Sci. Instrum. 76, 073302 (2005)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.