Abstract

We study tunneling through resonant tunneling diodes (RTD) with very long emitter drift regions (up to 2 microm). In such diodes, charge accumulation occurs near the double barrier on the emitter side, in a self-induced potential pocket. This leads to a substantial enhancement of the wave function overlap between states of the pocket and the RTD, and, consequently, to increased off-resonant current mediated by various scattering processes. For RTD with the longest drift region (2 microm), an additional strong current peak is observed between the first and the second resonant peaks. We attribute this pronounced feature to the intersubband transitions mediated by resonant emission of intersubband plasmons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.