Abstract

We have applied a scaled version of the Kohn-Sham equations of density-functional theory to study the charge distribution at the condition of resonant tunneling in coupled quantum dots. We find that the tunneling process is governed by the symmetry properties of the resonantly coupled quantum-dot states. At resonance, the coupled atomiclike quantum-dot states form bonding and antibonding molecular resonant-tunneling states. The charge distribution of the bonding-type state is given. In addition, we find asymmetries of the charge in the barrier vs voltage (analogous to {ital I}-{ital V} curves) as a result of electron-electron interactions between electrons in the excited tunneling and ground states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.