Abstract

Excited states in single quantum dots (QDs) have been shown to be useful for spin state initialization and manipulation. For scalable quantum information processing it is necessary to have multiple spins interacting. Therefore, we present initial results from photoluminescence excitation studies of excited states in coupled quantum dots (CQDs). Due to the rich set of possible excitation and recombination possibilities, a technique for visualizing photoluminescence excitation in coupled quantum dots is discussed, by which both the interaction between the dots and the type of absorption and emission that generated the photoluminescence is easily and clearly revealed. As an example, this technique is applied to characterize the shell structure of the hole in the top dot and the results are compared with those using Level Anti-Crossing Spectroscopy (LACS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.