Abstract

In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call