Abstract
Toroidal resonances with weak free-space coupling have recently garnered significant research attraction toward the realization of advanced photonic devices. As a natural consequence of weak free-space coupling, toroidal resonances generally possess a high quality factor with low radiative losses. Because of these backgrounds, we have experimentally studied thin-film sensing utilizing toroidal resonance in a subwavelength planar metasurface, whose unit cell consists of near-field coupled asymmetric dual gap split-ring resonators (ASRRs). These ASRRs are placed in a mirrored configuration within the unit cell. The near-field coupled ASRRs support circulating surface currents in both resonators with opposite phases, resulting in excitation of the toroidal mode. In such a way, excited toroidal resonance can support strong light-matter interactions with external materials (analytes to be detected) placed on top of the metasurface. Further, our study reveals a sensitivity of 30GHz/RIU while sensing AZ4533 photoresist film utilizing the toroidal mode. Such detection of thin films can be highly beneficial for the development of sensing devices for various biomolecules and dielectric materials that can be spin coated or drop casted on metasurfaces. Hence, the toroidal mode is further theoretically explored towards the detection of avian influenza virus subtypes, namely, H5N2 and H9N2. Our study reveals 6 and 9GHz of frequency redshifts for H5N2 and H9N2, respectively, in comparison to the bare sample. Therefore, this work shows that toroidal metasurfaces can be a useful platform to sense thin films of various materials including biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.