Abstract

A new rigorous approach for precise and efficient calculation of light propagation along non-uniform waveguides is presented. Resonant states of a uniform waveguide, which satisfy outgoing-wave boundary conditions, form a natural basis for expansion of the local electromagnetic field. Using such an expansion at fixed frequency, we convert the wave equation for light propagation in a non-uniform waveguide into an ordinary second-order matrix differential equation for the expansion coefficients depending on the coordinate along the waveguide. We illustrate the method on several examples of non-uniform planar waveguides and evaluate its efficiency compared to the aperiodic Fourier modal method and the finite element method, showing improvements of one to four orders of magnitude. A similar improvement can be expected also for applications in other fields of physics showing wave phenomena, such as acoustics and quantum mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call