Abstract
In the present article the classical problem of electromagnetic scattering by a single homogeneous sphere is revisited. Main focus is the study of the scattering behavior as a function of the material contrast and the size parameters for all electric and magnetic resonances of a dielectric sphere. Specifically, the Pad\'e approximants are introduced and utilized as an alternative system expansion of the Mie coefficients. Low order Pad\'e approximants can give compact and physically insightful expressions for the scattering system and the enabled dynamic mechanisms. Higher order approximants are used for predicting accurately the resonant pole spectrum. These results are summarized into general pole formulae, covering up to fifth order magnetic and forth order electric resonances of a small dielectric sphere. Additionally, the connection between the radiative damping process and the resonant linewidth is investigated. The results obtained reveal the fundamental connection of the radiative damping mechanism with the maximum width occurring for each resonance. Finally, the suggested system ansatz is used for studying the resonant absorption maximum through a circuit-inspired perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.