Abstract

We show that the artificial resonances of dielectric optical cavities can be used to enhance the detection sensitivity of evanescent-wave optical fluorescence biosensors to the binding of a labeled analyte with a biospecific monolayer. Resonant coupling of power into the optical cavity allows for efficient use of the long photon lifetimes (or equivalently, the high internal power) of the high-Q whispering gallery modes to increase the probability of photon absorption into the fluorophore, thereby enhancing fluorescence emission. A method to compare the intrinsic sensitivity between resonant cavity and waveguide formats is also developed. Using realistic estimates for dielectric cylindrical cavities in both bulk and integrated configurations, we can expect sensitivity enhancement by at least an order of magnitude over standard waveguide evanescent sensors of equivalent sensing geometries. In addition, the required sample volume can be reduced significantly. The cylindrical cavity format is compatible with a large variety of sensing modalities such as immunoassay and molecular diagnostic assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.