Abstract

Mass-resolved (2 + n) resonance-enhanced multiphoton ionization (REMPI) spectra of CH2Br2 in the two-photon resonance excitation region from 71 200 to 82 300 cm(-1) were recorded and analyzed. Spectral structures allowed characterization of new molecular Rydberg states. C*((1)D2) was found to be an important intermediate in the photodissociation processes. A broad spectral feature peaking at about 80 663 cm(-1) in the C(+) spectrum and frequently seen in related studies is reinterpreted and associated with switching between three- and two-photon ionization of C*((1)D2). Analysis of band structures due to transitions from the A(2)Δ state of CH* that were seen in the CH(+) and C(+) REMPI spectra allowed characterization of three electronic states of CH, assigned as E(2)Π, D(2)Π, and F(2)Σ(+), which clarifies a long-term puzzle concerning the energetics of the CH radical. Predissociation of the E, D, and F states to form C*((1)D2) occurs. Bromine atomic lines were observed and are believed to be associated with bromine atom formation via predissociation of CH2Br2 Rydberg states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call