Abstract

In a weakly acid medium, some aminoglycoside antibiotics, such as kanamycin (KANA), gentamicin (GEN), tobramycin (TOB), and neomycin (NEO), or acid bisazo dye pontamine sky blue (PSB) can only produce very weak resonance Rayleigh scattering (RRS) signals. However, when the two agents react with each other to form the ion association complexes, the RRS intensity can be enhanced greatly and a new RRS spectrum and a significant enhancement of the RRS intensity in the wavelength range 350-600 nm can be observed. The maximum scattering peak is at 580 nm. There is a linear relationship between the RRS intensity and the antibiotic concentration in the range 0.01-6.0 microg mL(-1) at 580 nm. This RRS method has therefore been developed for the determination of trace levels of aminoglycoside antibiotics. The detection limits (3 sigma) of the four antibiotics, whose order of sensitivity is KANA>NEO>TOB>GEN, are 5.8-6.9 ng mL(-1). This method has a good selectivity and has been successfully applied to the quick determination of antibiotics not only for injections and ear drops, but clinic serum samples as well. In addition, quantum chemistry-based analysis of the reaction mechanism, the factors influencing the RRS spectra, and the reasons for the enhancement of RRS are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.