Abstract

Cooker’s sloshing experiment is a prototype for studying the dynamic coupling between fluid sloshing and vessel motion. It involves a container, partially filled with fluid, suspended by two cables and constrained to remain horizontal while undergoing a pendulum-like motion. In this paper the fully-nonlinear equations are taken as a starting point, including a new derivation of the coupled equation for vessel motion, which is a forced nonlinear pendulum equation. The equations are then linearized and the natural frequencies studied. The coupling leads to a highly nonlinear transcendental characteristic equation for the frequencies. Two derivations of the characteristic equation are given, one based on a cosine expansion and the other based on a class of vertical eigenfunctions. These two characteristic equations are compared with previous results in the literature. Although the two derivations lead to dramatically different forms for the characteristic equation, we prove that they are equivalent. The most important observation is the discovery of an internal 1:1 resonance in the fully two-dimensional finite depth model, where symmetric fluid modes are coupled to the vessel motion. The numerical evaluation of the resonant and nonresonant modes is presented. The implications of the resonance for the fluid dynamics, and for the nonlinear coupled dynamics near the resonance are also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call