Abstract

This paper explores the combined influence of an axial electric field and a perpendicular magnetic field imposed on rotating micro-parallel plates immersed in an electrolyte solution. A specialized computer program was developed to solve the velocity as well as the EDL potential fields using the finite difference method, employing the Debye-Hückel (DH) approximation to linearization the EDL potential. The study examines the influence of various non-dimensional parameters, including rotational speed (ω), Hartmann number (Ha), Debye-Hückel parameter (κ), and the non-dimensional parameter ‘S’, on axial, and transverse velocities, wall shear stress, and net flow rate. Results demonstrate that, both velocity components decrease with increased rotational speed and Hartmann number, while the net flow rate increases with the Debye-Hückel parameter for both rotating and non-rotating systems. The impact of these parameters on shear stress was also analyzed. Analysis of Ekmann spirals in the velocity plane revealed closed spirals at a higher rotational speed and open spirals at lower speeds, with spiral size reducing as rotational speed increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call