Abstract
The resonance characteristics of the Fabry-Pérot resonator modes supported by metal/dielectric/metal planar structures are studied in the case of absorbing media for near-to-normal light incidence. Approximations based on rigorous solution and field-transfer model for the field and resonance line shapes in spectra are attributed to the class of Fano and Lorentz resonances. The analytical expressions are obtained for the propagation constant and field enhancement of the mode, width, height and slope of resonance line shapes in spectra as functions of structural parameters. With estimation of field characteristics of the fabricated loss structures based on aluminum and quartz, the peaks in the transmission spectra can be attributed to the excitation of Fabry-Pérot modes. Fundamental characterization of Fabry-Pérot resonances may find applications in optical processing and sensing.
Highlights
The resonance characteristics of the Fabry-Pérot resonator modes supported by metal/dielectric/metal planar structures are studied in the case of absorbing media for near-tonormal light incidence
Approximations based on rigorous solution and field-transfer model for the field and resonance line shapes in spectra are attributed to the class of Fano and Lorentz resonances
The analytical expressions are obtained for the propagation constant and field enhancement of the mode, width, height and slope of resonance line shapes in spectra as functions of structural parameters
Summary
Рассмотрим трёхслойную структуру металл/диэлектрик/металл, представляющую диэлектрический слой с металлическими обкладками. 1) αk0 в слое Ll константа распространения поля βlk0 вдоль оси z будет определяться как βl (α)k0 = k0 εl − α2 , где εl = nl2 – диэлектрическая проницаемость слоя Ll. Падение плоской волны вида (1) на границу раздела сред Il–1,l приводит к генерации двух исходящих от границы плоских волн: отражённой r l −1. Принимая во внимание интерференцию полей в слое Ll, выражения передачи амплитуд поля на границах этого слоя могут быть записаны в следующем виде. Коэффициент пропускания трёхслойной структуры tl–1,l+1 может быть найден в виде tl −1,l +1 = t H l,l +1 l,l +1 / Hl −1,l. Электромагнитное поле в структуре, коэффициенты отражения и пропускания могут быть найдены на основе метода передаточных матриц 2×2 [12] для плоских волн, распространяющихся в слоистых средах.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have