Abstract
The resonance and chaos of micro (nano) electro mechanical resonators with time delay feedback is concerned in the paper. Based on the experimental results, a lumped single degree-of-freedom (1DOF) model is studied and the effects of time delay displacement and velocity feedback on the system are investigated. In order to have a deep insight into the system, the amplitude frequency response curve of the system is firstly obtained using the multiple scales method. The Melnikov function method is then extended to the two time delay systems, and the analytically required condition for chaos was obtained. Finally, the fourth-order Runge–Kutta method, point-mapping method and spectrum diagram are used to simulate the evolution of the dynamic behavior of the time delay control system. Also, the stability of this time delay control system is studied thoroughly. The results show that time delay feedback is a good method for the control system and that reasonable selection of control system parameters can effectively suppress the vibration level for micro/nano-electro-mechanical resonator systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have