Abstract
The Haughton Dome located on Devon Island, in the Canadian Archipelago represents a well-preserved, moderate-sized, complex impact crater. Previous age constraints for the 24 km-diameter impact structure have ranged from ca. 21 Ma to ca. 39 Ma. Herein, we present a coordinated microstructural and in situ U-Pb study of zircon and monazite coupled with 40Ar/39Ar laser step heating of shock-melted K-feldspar clasts from shock metamorphosed gneissic fragments collected from the allochthonous impact breccia at Haughton. Moderately shocked zircon and monazite grains yield an age distribution consistent with an Archean protolith metamorphosed at ca. 1.9 Ga, whereas shock recrystallized zircon and monazite yield a lower intercept age of 31.8 ± 1.7 Ma (n = 48, MSWD = 0.58, P = 0.99). Four inverse isochron 40Ar/39Ar ages of shocked feldspar clasts yield a weighted mean age of 31.04 ± 0.37 Ma (MSWD = 0.98, P = 0.40), within uncertainty of the U-Pb lower concordia intercept. Ar diffusion modelling supports the interpretation of the impact age and helps resolve impact-driven age resetting. These results highlight the power of coupling multiple geochronologic techniques for determining impact ages, especially from targets with complex geologic histories. Furthermore, they resolve previous discrepancies in the age of the Haughton Dome and the interpretation of the post impact stratigraphy of the crater fill.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.